UNCLASSIFIED AD 274 237 Reproduced by the ARMED SERVICES TECHNICAL INFORMATION AGENCY ARLINGTON HALL STATION ARLINGTON 12, VIRGINIA UNCLASSIFIED NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto. # Determination of Physical Parameters of Drift Transistors Having a Diffused Collector Junction by A. R. Boothroyd Series No. 60, Issue No. 391 AF 49(638)-1043 August 11, 1961 ELECTRONICS RESEARCH LABORATORY UNIVERS IT OF CALIFORN A BERKELEY CAL FORNIA ## **AFOSR 2118** Electronics Research Laboratory University of California Berkeley, California DETERMINATION OF PHYSICAL PARAMETERS OF DRIFT TRANSISTORS HAVING A DIFFUSED COLLECTOR JUNCTION by A. R. Boothroyd Institute of Engineering Research Series No. 60, Issue No. 391 Air Force Office of Scientific Research of the Air Research and Development Command; Department of the Navy, Office of Naval Research; and Department of the Army Contract No. AF 49(638)-1043 August 11, 1961 ## LIST OF PRINCIPAL SYMBOLS | N | impurity density in the base | |---------------------------|---| | L | critical length defining an exponential distribution of N | | D | diffusion constant of minority carriers in the base | | m | electric field parameter = $\Delta V/(kT/q) \doteq w/L$ | | w | electrical base width | | d | collector depletion layer width | | A _e | emitter area | | ĸ | absolute permittivity of base material | | $\Psi_{\mathbf{e}o}$ | contact potential of emitter junction | | n _i | intrinsic hole and electron density | | $\mathbf{w}_{\mathbf{b}}$ | distance between collector and emitter junction transition points | | т | intrinsic base transit time | | т' | "effective transit time" = $1/(2\pi f_T)$ | | | | ### SUMMARY A procedure for the determination of physical parameters of drift transistors with a diffused collector junction has been developed on the assumption of a device model with exponential base grading. Only relatively low-frequency measurements are involved. Studies have been made of a double-diffused silicon mesa unit (Fairchild 2N696) and the results obtained suggest that the theory used may be adequate for practical application, despite discrepancies between the assumed model and the actual device. Good correlation between certain known design values of physical parameters of the device, and the values deduced from measurements, has been obtained. More investigation is necessary, however, in order to establish the conditions of validity, accuracy and possible need for further elaboration of the approach presented. ## TABLE OF CONTENTS | | | Page | | | | | |---|----|------|--|--|--|--| | I. INTRODUCTION | | 1 | | | | | | THEORETICAL BASIS OF THE METHOD OF PHYSICAL | | | | | | | | PARAMETER DERIVATION | | 2 | | | | | | II.1 Evaluation of the Basic Parameters L, m and w | | 5 | | | | | | II. 2 Evaluation of Other Parameters | | 7 | | | | | | II.3 Iteration | | 8 | | | | | | III. MEASUREMENT TECHNIQUES | | 9 | | | | | | III.1 Base Transit Time Measurements | | 9 | | | | | | III. 2 Measurement of Collector Capacitance Ratios | | 11 | | | | | | III.3 Measurement of r _{bb} , | | 12 | | | | | | IV. PRACTICAL RESULTS | | 13 | | | | | | IV.1 The Basic Measurements | | 13 | | | | | | IV. 2 Other Measurements | | 19 | | | | | | IV.3 Iteration Process | | 22 | | | | | | IV. 4 Summary of Derived Parameter Values | | 23 | | | | | | V. DISCUSSION | | 24 | | | | | | VI. CONCLUSIONS | | 25 | | | | | | APPENDIX I. DETAILS OF THE TRANSIT TIME BRIDGE | | 26 | | | | | | APPENDIX II. DETAILS OF THE BRIDGE ARRANGEMENT F | OR | | | | | | | MEASUREMENT OF rbb' Cc | • | 28 | | | | | | APPENDIX III. DETERMINATION OF rbb, OF 2N696 SAMPLE | | | | | | | | STUDIED IN SECTION IV | | 30 | | | | | | DEEDENCES | | 2.1 | | | | | ## LIST OF ILLUSTRATIONS | Figure | | Page | |--------|--|------| | 1 | Step and Graded Collector Junctions | 3 | | 2 | Device Assumptions | 4 | | 3 | Arrangement of Bridge for Measurement of Transit | | | | Time | 9 | | 4 | Arrangement for Measurement of rbb' C Using Wayne | | | | Kerr Bridge | 11 | | 5 | Plot of Effective Transit Time τ^{\dagger} Against $1/I_e$ | 14 | | 6 | τ ₁ - τ ₂ Measurements | 15 | | 7 | Dependence of rbb, C and C on V | 16 | | 8 | Relationship Between $\tau_1 - \tau_2$ and $\ln (C_{c1}/C_{c2})$ | 18 | | 9 | Dependence of Emitter Depletion Capacitance on | | | | Reverse Voltage | 20 | | 10 | I Versus Veb Relationship | 21 | | 11 | Details of Bridge for Measurement of Effective Transit | | | | Time on $\omega_{\mathbf{T}}$ | 27 | | 12 | Circuit Arrangement of Figure Used for Measurement | | | | of r _{bb} , C and C | 29 | | 13 | Equivalent Circuit of the Transistor Assumed in | | | | Determination of r _{hh} | 29 | ## I. INTRODUCTION It has been found possible to derive a considerable amount of physical data for drift transistors of alloy-junction type by measuring the dependence of effective transit time (i.e., $1/\omega_{\rm m}$) and collector capacitance on collector voltage^{1, 2}. Assuming a specific form of impurity density distribution in the base--viz. exponential or complementary error function -- such measurements lead to the derivation of base width, field parameter $m = \Delta Vq/kT$, collector depletion layer width, emitter area, impurity density as a function of distance and other related properties. The physical properties exploited in these derivations are illustrated in Figure la: a change in collector voltage causes change in both the minority carrier charge Q in the base region and the space charge in the collector depletion layer, resulting in corresponding changes in base transit time $\tau = Q/I_a$ and collector capacitance C_c . In the case of the alloy junction device, as shown, the changes in base width and depletion layer thickness are equal and opposite, a property that leads to relatively simple relationships between changes in τ and C_c . Specifically, for an alloy junction transistor with base impurity density distribution of the form $$N = N_0 e^{-x/L}, (1)$$ it may be shown that $$L \approx \sqrt{\frac{D \left(\tau_1 - \tau_2\right)}{\ln \left(\frac{V_{cl}}{V_{c2}} \frac{C_{cl}}{C_{c2}}\right)}}$$ (2) where τ_1 , C_{cl} and τ_2 , C_{c2} are measured at collector voltages V_{cl} and V_{c2} , respectively. Then, for given V_c , $$\tau = \frac{L^2}{D} (m - 1) \tag{3}$$ so that if $$m > 3$$ $$\mathbf{m} \simeq \frac{\tau D}{L^2} + 1 \tag{4}$$ $\mathbf{w} \stackrel{\mathsf{d}}{=} \mathbf{m} \mathbf{L}$ (5) Having determined the above parameters, the values of impurity density N_{o} and emitter area follow from measurements of the dependence of emitter depletion capacitance on reverse bias voltage and the d.c. $I_{c} \sim V_{eb}$ characteristic of the device with emitter forward and collector reverse biased. The above process of parameter evaluation is applicable only for a device with a step collector junction and exponential base impurity grading. If the collector junction is graded, as when formed by a diffusion process (e.g., mesa device), changes in base width and collector depletion layer width resulting from collector voltage change are not equal and opposite, as illustrated in Figure 1b: equation (2) does not apply in such a situation. This report presents a procedure for the derivation of physical parameters of drift transistors of diffused collector junction type, following along the lines outlined above for the step junction device. Exponential base grading is assumed, so that equations (3) - (5) apply. Alternatively, a complementary error function distribution of impurity density may be considered and similar relationships derived, equations (3) and (4) still being valid. The most appropriate form of base grading needs to be established for the class of device concerned, possibly using the approach presented in reference 2; this matter is not pursued, however, in the present report. # II. THEORETICAL BASIS OF THE METHOD OF PHYSICAL PARAMETER DERIVATION In order to keep the analysis within reasonable bounds of simplicity it is necessary to represent the transistor by a somewhat idealized model, as follows. The device cross-section of Figure 2a is assumed, for a mesa or planar diffused base device of linear or circular geometry. All injected minority carriers comprising collector current are supposed to flow directly from emitter to collector within the emitter area A, without side effects. b) Diffused junction collector $\Delta w \neq - \Delta d$ Figure 1. Step and Graded Collector Junctions a) Assumed device cross-section b) Assumed form of equivalent circuit (representation of collector body resistance omitted) Figure 2. Device Assumptions The effective base region is thus of area A_e and width w, and is regarded as obeying ideal one-dimensional theory. The complete device is considered to be represented by the equivalent circuit of Figure 2b in which C_c is the part of the total collector depletion capacitance opposite the emitter area A_e . Further assumptions are that the base impurity density is (see Figure 1b) of the form $$N(x) = N_1 e^{-x/L} - N_2,$$ (6) so defining the graded collector junction transition point at $$x = w_b = L \ln (N_1/N_2),$$ (7) and that the emitter junction is either of
step or very abrupt graded transition. ## II.1 Evaluation of the Basic Parameters L, m and w The property utilized as the starting point in the determination of physical parameters is that the total depletion layer space charge is zero. Thus assuming complete depletion of impurities within depletion layer thickness d, and zero depletion elsewhere, $$\int_{W}^{W+d} N(x) dx = 0$$ (8) giving the relationship $$e^{w/L} = \frac{N_1}{N_2} \cdot \frac{L}{d} \left(1 - e^{-d/L} \right) = e^{m}$$ (9) Taking now two values V_{c1}, V_{c2} of collector reverse voltage, $$e^{\mathbf{w}_{1} - \mathbf{w}_{2} / L} = e^{\mathbf{m}_{1} - \mathbf{m}_{2}} = \frac{d_{2}}{d_{1}} \cdot \left(\frac{1 - e^{-d_{1} / L}}{1 - e^{-d_{2} / L}} \right)$$ $$= \frac{d_{2}}{d_{1}} \cdot \frac{1}{F}$$ (10) Now if d_1 , $d_2 >> L$, $F \approx 1$ and $$e^{\frac{m_1 - m_2}{d_1}} \simeq \frac{d_2}{d_1} = \frac{C_{c1}}{C_{c2}}$$ (11) The assumption that $\frac{d}{L} >> 1$ will be made at this stage, but is not essential; if this condition is not obeyed the effect of the factor F may be included, as shown later. It should be noted that d/L does not need to be very large for F > 1 because of the exponentials involved. Writing m in terms of base transit time τ from equation (3), one gets $$\tau_1 - \tau_2 \sim \frac{L^2}{D} \cdot \ln (C_{cl}/C_{c2})$$ (12) where τ_1 , C_{cl} and τ_2 , C_{c2} are for collector voltages V_{cl} and V_{c2} , respectively. If now V_{c2} is fixed and V_{cl} varied, plotting $\tau_1 - \tau_2$ against $\ln (C_{cl}/C_{c2})$ should give a straight line, so verifying applicability of the theory for a given device and yielding the value of L from the slope of the line. Alternatively, for two collector voltages, $$L \sim \sqrt{\frac{D (\tau_1 - \tau_2)}{\ln (C_{c1}/C_{c2})}}$$ (13) If $d/L \not > 1$, then from equation (10) $$L = \sqrt{\frac{D (\tau_1 - \tau_2)}{\ln (C_{c1}/F C_{c2})}}$$ (14) where F involves knowledge of L, d₁ and d₂. Equation (14) may be solved for L by iteration if d is separately determined, as discussed below. Having evaluated the critical length L, m and w follow from equations (4) and (5), repeated here: $$m = \frac{\tau D}{L^2} + 1$$ $$w = m L$$ (15) ## II. 2 Evaluation of Other Parameters The emitter area A_e , collector depletion layer width d and impurity densities N_1 , N_2 may be evaluated if additional measurements are carried out. For a step emitter junction of an n-p-n device, the depletion capacitance $$C_{te}^{2}A_{e}\left[\frac{q K N_{1}}{2(\psi_{e})}\right]^{1/2} \tag{16}$$ where $$\psi_e = \psi_{eo} + V_{eb}$$ and the impurity density in the emitter depletion layer region of base material $^{2}N_{1}$. Plotting $1/C_{te}^{2}$ against reverse V_{eb} , a straight line of slope $K_{1} = 2/(q N_{1} A_{e}^{2})$ results for such a junction from which the value of $N_{1} A_{e}^{2}$ is known; viz. $$N_1 A_e^2 = 2/(q K K_1)$$ (17) For small emitter current, such that true low level injection conditions obtain, and with the collector junction reverse biased, $$I_{c} \simeq A_{e} \frac{n_{i}^{2}}{N_{1}} \cdot q \frac{D}{L} e^{-qV_{eb}/kT} + I_{o}$$ (18) for an n-p-n device. Voltage drop across r_{bb} is assumed to be negligible so that V_{eb} is the voltage applied across the emitter junction. Plotting I_c against $\exp(-qV_{eb}/kT)$ gives a straight line of slope K_2 where $$\frac{A_e}{N_1} = K_2 \cdot \frac{L}{n_i^2 q D} \tag{18}$$ Hence, from equations (17) and (18), $$\mathbf{A}_{\mathbf{e}} = \left[\frac{2 \, \mathbf{K}_2 \, \mathbf{L}}{\mathbf{q}^2 \, \mathbf{k} \, \mathbf{K}_1 \, \mathbf{n}_i^2 \, \mathbf{D}} \right]^{1/3} \tag{19}$$ $$N_1 = \frac{A_e n_i^2 q D}{K_2 L}$$ (20) N₂ follows from equation (9), viz. $$N_2 = N_1 \cdot \frac{L}{d} \left(1 - e^{-d/L} \right) e^{-m},$$ (21) provided that d is known. The distance w_b between emitter and collector junctions is also defined by the ratio N_1/N_2 as in equation (7). Knowledge of the "inner" collector capacitance C_c allows the value of d to be calculated, assuming this capacitance to represent area A_e of the collector depletion layer, since then $$C_{c} = \frac{K A_{e}}{d}$$ (22) Measurement of r_{bb}, and the product r_{bb}, C_c give the value of C_c. ## II. 3 Iteration After carrying through the above sequence of calculations based on the condition $F \cong I$, it is necessary to verify that this assumption is valid. If d/L is not sufficiently large for $F \cong I$, as may be the case for a practical device, the value of L may be determined by iteration. Using the F value calculated as above, equation (14) is used to obtain a modified value of L. A_e is then recalculated from equation (19), d from (22) and a new F value obtained. This process is iterated until a further step leads to no further change in L. ## III. MEASUREMENT TECHNIQUES For the above process of parameter determination to be carried out, the following quantities need to be measured: - 1. base transit time τ - 2. collector capacitance ratio C_{cl}/C_{c2} for two collector voltages - 3. emitter depletion capacitance Cte - 4. Ic Veb characteristic - 5. extrinsic base resistance r_{bb}. ## III.1 Base Transit Time Measurements It is required to determine τ and also transit time differences for two collector reverse bias voltages; in the latter very small fractional differences are possibly involved. For this purpose the bridge arrangement of Figure 3 may be used. Figure 3. Arrangement of Bridge for Measurement of Transit Time The bridge balance conditions are as follows: with R, C adjusted for null indication by the detector the transistor is operating with collector effectively shorted to base; thus $$\frac{i_{c}}{i_{b}} = \beta = \frac{R}{r (1 + j\omega CR)} = \frac{\beta_{o}}{1 + j\omega/\omega_{\beta}}$$ (23) so that $$\beta_{0} = R/r$$ $$\omega_{\beta} = 1/CR$$ and $1/\omega_{T} = Cr = \tau'$ $$if \beta_{0} >> 1$$ (24) Now $$\tau' = \tau + C_{te} r_{d}^{+}$$ (25) where τ is the base transit time Q/I_e and $$r_d = kT/q I_e$$ Plotting $\tau' = 1/\omega_T$ against $1/I_e$ yields a straight line of slope $C_{te} \cdot kT/q$; extrapolating to $1/I_p = 0$ gives τ . The bridge is convenient for measuring transit time differences since $$\tau_1 - \tau_2 = \tau_1' - \tau_2' = r (C_1 - C_2)$$ (26) Details of the practical arrangement of the bridge used for the measurements reported in Section IV are given in Appendix I. A noteworthy feature is the incorporation of a variable capacitor of small range calibrated directly in terms of C₁ - C₂ for facilitating transit time difference measurements. [†]Assuming collector capacitance effects to be negligible. Otherwise $\tau' \approx \tau + (C_{te} + C_c + C_{cb}) *_d$ (25a)if effects of collector body resistance may be neglected (i.e., this resistance on I sufficiently small for "Miller effects" to be insignificant). Referring to Figure 2b, presence of r_{hh} , is ignored in arriving at equation (25a). ## III. 2 Measurement of Collector Capacitance Ratios With a base cross-section as in Figure 2a, it would seem reasonable to employ the ratio of either $C_{\rm C}$ values, or of total collector capacitance $$C_{ob} = C_c + C_{cb}$$ in equations (12) to (14), provided that stray capacitance external to the collector depletion layer is negligible. In cases where stray capacitance is an appreciable fraction of $C_{\rm ob}$, $C_{\rm c}$ ratios must be used. In practice it is more convenient to evaluate $C_{\rm cl}/C_{\rm c2}$ as the ratio of $r_{\rm bb'}$ $C_{\rm c}$ products for the collector voltage concerned, this product being readily measurable. Perhaps the most satisfactory method of determining $r_{\rm bb'}$ $C_{\rm c}$ is by means of the Turner bridge³. In the absence of such a bridge an alternative method is to use the Wayne Kerr admittance bridge in the manner of Figure 4. Figure 4. Arrangement for Measurement of r_{bb}, C_c Using Wayne Kerr Bridge With the points XY unconnected the bridge is balanced and C_{ob} (i.e., the common base parameter h₂₂) measured. XY are then connected together and C is adjusted so that the bridge is again balanced; then $$CR = r_{bb'} C_C \tag{27}$$ This method was used for the measurements of the next section, the practical arrangement of the bridge being as in Appendix II. The same jig was used for measurement of C_{te} as a function of reverse V_{eb} , by interchanging the emitter and collector connections. ## III. 3 Measurement of rbb! There are many possible methods of measuring extrinsic base resistance values 4 , though the significance of the results obtained is often difficult to interpret in view of the distributed nature of extrinsic base region effects. For the present purpose it is preferable to use methods of measurement that are as closely as possible under the same conditions of operation of the transistor as employed when determining the product $r_{\rm bb}$, $C_{\rm c}$. Thus the transistor should be operated under the same d.c. bias conditions and at the same order of frequency, so that the flow of base current originates uniformly over the base cross-section as in the measurement of τ' . The method employed was to measure the base input y_{11} parameter with emitter common, at a frequency of the order of f_{β} (actually the same as for the τ' measurement), and to evaluate $r_{bb'}$ from a knowledge or estimate of all other relevant equivalent circuit parameters involved in this admittance. Thus, an estimate is made of C_{cb} , having measured C_{cb} ; then if effects of collector body resistance are negligible $$y_{11}' = y_{11} - j\omega C_{cb}$$ where $$1/y_{11}' = r_{bb'} + 1/y_{b'e}$$ (28) From measurements made at the same bias point and frequency with the bridge of Section III.1 $$y_{b'e} = (1 - a_0)/r_d + j\omega(\tau'/r_d - C_{cb})$$ (29) [†]See footnote on page 10 in regard to the approximation involved in this expression. with appropriate choice of frequency the
difference of real parts of $1/y_{11}$ ' and $1/y_{b^1e}$ gives r_{bb^1} with reasonable accuracy. Having carried through the full procedure of calculation of Section II, the initial estimate of C_{cb} may be checked and if necessary corrected. ### IV. PRACTICAL RESULTS The measurements outlined in the previous section have been carried out for a variety of transistors of diffused base type having f_T ranging between 50 mc/s and 700 mc/s; the results obtained indicate that the measurement techniques described are suitable for the practical application of the parameter derivation process. For detailed study, an n-p-n silicon mesa transistor, Fairchild Type 2N696, was chosen, the selected device having conveniently low f_T. Certain physical data was available for this device with which derived parameters could be compared. The results reported in the present section are restricted to the study of this single device sample and should be regarded as a test of the feasibility of the procedure of parameter evaluation, rather than an exhaustive assessment of its applicability and accuracy. ## IV.1 The Basic Measurements The theory of Section II assumes an idealized device with exponential base grading; although the grading for the type 2N696 undoubtedly deviates from this ideal (particularly near the emitter), the theory is applied in the following, the transistor being regarded as represented by an "exponential model". The basic measurements necessary are of τ' (= $1/\omega_T$) as a function of emitter current at constant collector voltage, and of change of transit time τ and fractional collector capacitance $C_{\rm c}$ with change of collector voltage at constant emitter current. The results of these measurements, carried out at 1 mc/s, are given in Figures 5 through 7, respectively. Parameters are evaluated for $V_{\rm c}$ = 5 v, $I_{\rm e}$ = -0.2 ma. From the plot of τ' against 1/I in Figure 5 one obtains: $$\tau = 2.36 \times 10^{-9} \text{ secs}$$ $$f_{\tau} = 1/2\pi \ \tau = 67.5 \ \text{mc/s}$$ and $$C_{te} + C_{ob} = 150 pF$$ from the slope of the line. Also, for $I_e = -5.0$ ma, $V_c = 5$ v $$\tau' = 3.2 \times 10^{-9} \text{ secs}$$ $$f_T = 1/2\pi \ \tau' = 50 \ mc/s$$ In Figure 6 the difference in transit time with collector voltage change with respect to $V_c = 10$ v is plotted. From these results, in conjunction with ratios of r_{bb} , C_c products derived from Figure 7, $\tau_1 - \tau_2$ is plotted as a function of $\ln (C_{cl}/C_{c2})$ in Figure 8. It is seen that a straight line relationship is obtained for collector voltages down to 3 v: this suggests that the assumed theory is applicable and the transistor approximates reasonably to the exponential model. Also plotted in Figure 8 are points derived from common-base open-current output capacitance measurements. Neglecting stray capacitance between transistor leads, the output capacitance $$C_{ob} = C_c + C_{cb}$$ and is the total collector depletion capacitance. Thus $C_{\rm ob}$ may be expected to behave with change of $V_{\rm c}$ in the same manner as does $C_{\rm c}$; this is seen to be the case, the latter points agreeing quite well with those derived from the $r_{\rm bb}$, $C_{\rm c}$ data. From equation (12) the slope of the above straight line plot is L^2/D , giving for $V_c = 5 v$, $$L = 1.3 \times 10^{-4} \text{ cm}$$ From equations (15) the values of the field factor and base width are $$m = 5.35$$ $w = 6.95 \times 10^{-4}$ cm. However, these values are accurate only if the ratio d/L is sufficiently large at the collector voltages considered for the approximation $F \cong I$ in equations (10) and (14) to be made. ## IV. 2 Other Measurements In order to evaluate the ratio d/L and verify the above calculations it is necessary to determine the emitter area A_e and the collector capacitance C_c for the collector voltage concerned. Then $$C_c = KA_c/d$$ Figure 9 gives measurements of $1/C_{\rm te}^2$ as a function of reverse emitter-base voltage. For voltages greater than 2 v a straight line relationship is exhibited, indicating approximate step junction behavior. From the slope of this straight line, according to equation (17) $$N_1 A_e^2 = 8.84 \times 10^{10} \text{ cm}$$ The d.c. relationship between I_c and V_{eb} , plotted in Figure 10, is a straight line, the slope of which gives $$\frac{A_e}{N_1} = .643 \times 10^{-20} \text{ cm}^5$$ It is noted from equation (18) that this last quantity is proportional to L, the above derived value of which has been used at this stage. If the value of L is later found to be in error owing to $F \neq 1$, the A_e/N_1 ratio needs to be modified when solution by iteration is applied as discussed in Section II.3. Thus $$A_e^3 = .569 \times 10^{-9} \text{ cm}^6$$ and $$A_e = .83 \times 10^{-3} \text{ cm}.$$ The r_{bb}, C_c product at V_c = 5 v is seen from Figure 7 to be $$r_{bb'} C_c = .57 \times 10^{-9} sec$$ Thus it now remains to determine r_{bb} , so that C_c and hence d may be calculated. The procedure of Section III. 3, carried out at 1 mc/s with $V_c = 5$ v and $I_a = 0.2$ ma, yields $$r_{bb!} = 625 - 476 = 149 \Omega$$ Details of this derivation are given in Appendix III. $$C_c = 3.8 pF$$ and $$d = 2.33 \times 10^{-4}$$ Hence $\frac{\mathbf{d}}{\mathbf{L}} = 1.79$ and this value is insufficiently large for the approximation F 2 1 to be valid. Iteration must therefore be applied to determine the true value of L. ## IV. 3 Iteration Process For the purpose of determining L by iteration, the collector voltages $$V_{c1} = 3 v$$ $$V_{c2} = 10 \text{ v}$$ were used for which, on the basis of $L = 1.3 \times 10^{-4}$ cm as above, $$d_1 = 2.0 \times 10^{-4} \text{ cm}, \qquad \frac{d_1}{L} = 1.54$$ $$\frac{d_1}{L} = 1.54$$ $$d_2 = 2.87 \times 10^{-4} \text{ cm}, \qquad \frac{d_2}{L} = 2.21$$ $$\frac{d_2}{L} = 2.21$$ yielding $$F = 1.13$$ Evaluating the modified value of L from equation (14) gives $$L = 1.58 \times 10^{-4}$$ and results in change of A to $$A_{a} = .883 \times 10^{-3} \text{ cm}^{2}$$ After recalculating d, and d, for this modified A, $$d_1/L = 1.35$$ $$d_2/L = 1.93$$ $$F = 1.156$$ $d_{1}/L = 1.35$ $d_{2}/L = 1.93$ F = 1.156 $L = 1.65 \times 10^{-4} \text{ cm}$ and Finally, using this last L value, $$A_{e} = .896 \times 10^{-3} \text{ cm}$$ $$d_{1}/L = 1.31$$ $$d_{2}/L = 1.88$$ $$F = 1.16$$ $$L = 1.67 \times 10^{-4} \text{ cm}$$ A further iteration results in negligible change in parameter values. ## IV. 4 Summary of Derived Parameter Values Having determined values of L and d to satisfy equation (9), it is possible to calculate all parameters discussed in Section II. The final results of these calculations are given below: $$V_{c} = 5 \text{ v}$$ $$L = 1.67 \times 10^{-4} \text{ cm}$$ $$m = 3.64$$ $$w = 6.08 \times 10^{-4} \text{ cm}$$ $$A_{e} = 0.896 \times 10^{-3} \text{ cm}^{2}$$ $$D_{e} = 338 \times 10^{-4} \text{ cm} \text{ (emitter diameter)}$$ $$d = 2.51 \times 10^{-4} \text{ cm}$$ $$d/L = 1.505$$ $$N_{1} = 1.09 \times 10^{17} \text{ cm}^{-3}$$ $$N_{2} = 1.47 \times 10^{15} \text{ cm}^{-3}$$ $$N_{1}/N_{2} = 73.6$$ $$w_{b} = 7.18 \times 10^{-4} \text{ cm}$$ $$\tau = 2.36 \times 10^{-9} \text{ secs; } f_{\tau} = 67.5 \text{ mc/s}$$ $$C_{ob} = 22.2 \text{ pF}$$ $$C_{c} = 3.8 \text{ pF}$$ $$C_{cb} = 18.4 \text{ pF}$$ $$C_{te}$$ = 128 pF ⁺ $r_{bb'}$ C_{c} = 0.57 x 10⁻⁹ secs $r_{bb'}$ = 150 Ω ### V. DISCUSSION In the previous section, theory based on a device model with exponential base grading has been applied somewhat blindly to a double-diffused n-p-n silicon unit. The results derived may be regarded as referring to an equivalent exponential model of the actual transistor studied. Just how close the physical parameters obtained (e.g., base width, emitter area, depletion layer thickness) are to the corresponding quantities in the device can only be established by carrying out more detailed investigations. Because of the diffused nature of the emitter junction (rather than the assumed step junction of Section II) it might be expected that marked divergence from the theoretical relationships of Section II would be observed during the course of the measurements. However, the relationship between τ_1 - τ_2 and $\ln C_{cl}/C_{c2}$ (Figure 8) is quite as predicted by theory, suggesting that deviations from exponential grading are not severe. The plot of $1/C_{te}^{-2}$ against reverse V_{e} in Figure 9 indicates the gradual, rather than step nature of the emitter junction, the linear relationship being exhibited only for voltages greater than 2 v. Since for forward biasing of the emitter junction the depletion layer must, in view of the behavior of Figure 9, fall short of the region of highest impurity density in the base, the interpretation of the $I_{c} \sim V_{eb}$ data of Figure 10 in terms of the expression of equation (18) is of uncertain significance. Again, provided that deviations from the assumed ideal device are not serious, use of this expression should presumably give the N_{1} value of an approximating exponential impurity density distribution. It is interesting to compare derived physical parameters with device design data given by the manufacturer, as below: ⁺Derived from the slope $(C_{te} + C_{ob}) r_{d}$ of the plot of τ' against $1/I_{a}$ in Figure 5. | | Device design value | From measurements | |----------------|--|--------------------------------------| | De | 375×10^{-4} cm | $338 \times 10^{-4} \text{ cm}$ | | N ₁ | $1.4 \times 10^{17} \mathrm{cm}^{-3}$ | $1.1 \times 10^{17} \text{ cm}^{-3}$ | | N ₂ | 2.5×10^{15} | $1.5 \times 10^{15} \text{ cm}^{-3}$ | In view of the approximations made in applying the theory to the 2N696 unit, the agreement is remarkably good. The extrinsic base resistance value listed in Section IV.4 would perhaps seem to be somewhat large for the type of transistor studied, and needs to be verified by other methods of
measurement⁴. From the relative area of the emitter and collector as specified by the manufacturer (namely 1:4) a value of 5 pF would seem reasonable for C_c ; from the measured r_{bb} , C_c value of 0.57×10^{-9} secs, the corresponding r_{bb} , value would be 114 Ω . If this value is used in the calculations of Section IV, then $L = 1.93 \times 10^{-4}$ cm, $D_e = 346 \times 10^{-4}$ cm and $N_1 = 1.24 \times 10^{17}$ cm⁻³. ### VI. CONCLUSIONS A possible approach to the derivation of physical parameters of drift transistors having a diffused collector junction has been presented on the basis of an exponentially graded base model. The measurements involved are all relatively simple and are carried out at quite low frequencies—i.e., frequencies of the order of f_{β} . No difficulty has been experienced in practice in performing the measurements involved with sufficient accuracy for their interpretation in analytic terms, provided that the theory is assumed valid for the device concerned. Detailed studies have been made of a type 2N696 n-p-n silicon mesa unit. Although the base impurity density is known to depart appreciably from an exponential distribution, owing to the double-diffused process of fabrication, the results obtained appear to conform reasonably well to the exponential theory, certain of the derived physical parameters being quite close to the manufacturer's design values for the device. More investigation is required before the true significance of physical parameters derived by the procedure presented in the report can be assessed. For some devices a complementary error function, or perhaps Gaussian, distribution of infinite density may be appropriate. The same general analytic procedure could be applied in such cases, though with greater complexity. ## APPENDIX I. DETAILS OF THE TRANSIT TIME BRIDGE The circuit of the bridge used for the measurements of Section IV is given in Figure 11. For satisfactory operation a compact layout is necessary, care being taken to reduce stray effects and coupling between emitter, base and collector circuit meshes to a minimum. The arrangement adopted consisted of four screened compartments, within which were: base circuit elements C, R collector path through r to ground emitter excitation lead-in detector transformer. Interconnections between these screened boxes were kept as short as possible, with complete separation of emitter excitation and output detector transformer. The variable capacitors C_1 , C_2 were small vane-type with spindles and moving vanes grounded. R was an Allen-Bradley carbon track potentiometer with the moving contact grounded: this arrangement gave consistent calibrations of resistance over a long time period, while the stray capacitance was found to be ~ 2 pF and constant over the full range of resistance (this capacitance was also constant over the frequency range 0.5 to 5 mc/s, for which the bridge was designed and operated). Particular care is necessary in the design of the detector transformer which converts out-of-balance voltage between collector and base to a voltage with respect to ground. The two windings need to be reasonably efficiently coupled magnetically yet screened from each other electrostatically. The construction adopted was to have the two halves of a 1/2" D. b) Preferred design of detector transformer c) "Transistor dummy" used for calibration of the bridge Figure 11. Details of Bridge for Measurement of Effective Transit Time on ω_{T} ferrite por-core assembly, containing the respective windings, separated by a thin (.006") grounded copper screening sheet (with appropriate slit): this gave excellent shielding but the distributed capacitance of the windings to ground was necessarily rather large (of the order of 10 pF). A better construction is as shown in Figure 11b, the two windings being on opposite extremes of a ferrite toroidal core and well separated from the screening sheet. A 1/2" D. toroid is very suitable for the purpose. The bridge was constructed specifically for carrying out the measurements reported, but should have other features incorporated if employed generally for measurement of effective transit time τ' or f_T . A single variable capacitor, possibly of range 10 - 60 pF is adequate provided other fixed capacitors can be switched in to give a sufficiently large range of the capacitance C (for example, capacitance steps of 50 pF up to 500 pF). While using the bridge it was necessary on occasions to reduce r by adding shunting resistors. This facility is best incorporated into the design of the bridge, means being provided for plugging or switching in shunting elements, without introducing undue lead strays. A useful minimum value of r is 10Ω . Bridge elements R and C were calibrated by direct admittance bridge measurements at the base terminal of the transistor socket, and by using the transit time bridge to measure the (known) elements R_D, C_D of the "transistor dummy" shown in Figure 11c. # APPENDIX II. DETAILS OF THE BRIDGE ARRANGEMENT FOR MEASUREMENT OF r_{bb}, C_c Figure 12 gives the circuit details of the jig used for measurement of r_{bb} , C_c , in conjunction with the Wayne Kerr admittance bridge. The variable capacitor C was of moving vane type giving a range of 6 to 16 pF. Care was necessary to avoid stray capacitance effects associated with the circuit CR; for this reason the element C was mounted in a screening can. Calibration of C was carried out with the Wayne Kerr bridge by regarding the capacitor as a three-terminal element with respect to ground. Of the stray capacitances C_1 , C_2 only the latter is significant in the operation of the bridge and the reactance of this is negligibly high in comparison with the resistance R for the frequencies concerned (< 5 mc/s). Figure 12. Circuit Arrangement of Figure Used for Measurement of r_{bb} , C_c and C_o Figure 13. Equivalent Circuit of the Transistor Assumed in Determination of rbb' # APPENDIX III. DETERMINATION OF r_{bb}, OF 2N696 SAMPLE STUDIED IN SECTION IV Measurements made at 1 mc/s with $V_c = 5$ v, $I_e = -0.2$ ma gave $\tau' = 21.8 \times 10^{-9}$ sec $\beta_c = 12$ Assuming that in regard to the effects of C_{cb} on τ' , $r_{bb'}$ may be neglected, $$\tau' \simeq \tau + r_d (C_{te} + C_c + C_{cb})$$ Thus, representing the transistor by the equivalent circuit of Figure 13, $$C_c + C_{b'e} = \tau' r_d - C_{cb} = 150 \text{ pF}$$ $r_{b'e} = r_d/(1 - a_0) = 1695 \Omega$ The impedance seen to the right of b'e, with collector started to emitter, may be written where $$r_{1} + jx_{1} = 1/y_{b^{\dagger}e}$$ $$r_{1} = r_{b^{\dagger}e} / \left\{ 1 + r_{b^{\dagger}e}^{2} \omega^{2} \left(C_{c} + C_{b^{\dagger}e} \right)^{2} \right\}$$ $$= 476 \Omega$$ Now if the short-circuit base input admittance of the transistor in common emitter configuration is written $$y_{11.} = y_{11}' + j\omega C_{cb} = \frac{1}{R_{be}} + j\omega C_{be}$$ and $1/y_{11}' = r_2 + jx_2$ then $r_{bb}' = r_2 - r_1$ Measurement of y₁₁ gives $$R_{be} = 1570 \Omega$$ $C_{be} = 142.5 pF$ $C_{b'e} = C_{be} - C_{cb} = 124.5 pF$ and $r_2 = 625 \Omega$ giving $r_{bb'} = 149 \Omega$ ## REFERENCES - 1. Das, M. B. and Boothroyd, A. R., "Determination of Physical Parameters of Diffusion and Drift Transistors," Trans. IRE on Electron Devices, ED-8, No. 1 (January 1961), pp. 15-30. - 2. Das, M. B. and Boothroyd, A. R., "Impurity Density Distribution in the Base Region of Drift Transistors," to appear in <u>Trans. IRE</u> on <u>Electron Devices</u>, (November 1961). - 3. Turner, R. J., "Surface Barrier Transistors, Measurements and Applications," Tele-Tech., 13 (1954) p. 78. - 4. Das, M. B., "On the Determination of the Extrinsic Equivalent Circuit Parameters of Drift Transistors," <u>Journal of Electronics</u> and Control, Vol. 8, No. 5 (May 1960). #### DISTRIBUTION LIST AF 49(638)-1043 | ORGANIZATION | NO. COPIES | ORGANIZATION | NO. COPIES | ORGANIZATION | NO. CCPIES | ORGANIZATION NO. | COPIES |
--|------------|---|--------------|---|------------|---|-------------| | Advanced Research Projects Agency Washington 45, D. C. | 1 | Commander, Detachment 1 | | P.O. Box AA
Wright-Patterson Air Force Base | | Chief, Bureau of Aeronautics
Navy Department
Washington 45, D. C.
Atin EL-51 | COFILS | | Aeronautical Research Laboratories
Attn. Technical Library, Bidg. 450
Wright-Patterson Air Force Base
Ohio | | The Shell Building
Brussels, Belgium | 2 | Ohio | 1 | Attn EL-51 Chief, Bureau of Ships | 1 | | Ohio Applied Mechanics Reviews Southwest Research Institute 8500 Culebra Road San Antonio II, Texas | 1 | Rome Air Development Center
Attn RAYLD
Griffiss Air Force Base
Rome, New York | | Princeton, New Jersey Attn: Dr. W. M. Webster, Director Electronics Research Laboratorie | 1 1 | Navy Department
Washington 45, D. C.
Attn. Code 838 | ż | | 8500 Culebra Road San Antonio I, Texas ARO, Inc. Attn: AEDC Library | 1 | Commander Wright Air Development Division Aitn' WWAD Wright-Patterson Air Force Base Ohio | 1 | Dr. Irving Rowe
Office of Naval Research
346 Broadway
New York, New York | 1 | Chief of Naval Research
Navy Department
Washington 45, D. C.
Attn. Code 447 | | | Arnuld Air Force Station Tullahoma Tennessee | 1 | | 4 | Sylvania Electric Company
Mountain View, California
Attn: D. H. Goodman | 1 | Chief of Naval Research | • | | ASTIA Atto IIPCR Artington Hall Station Arlington 14 Virginia | 10 | Commanding General U.S. Army Signal Corps Research an Development Laboratory Attn. SIGFM/EL-RPO Fort Monmouth, New Jersey | d | Technical Information Libraries | • | Navy Department
Washington 25, D. C.
Attn: Code 460
Commander | ı | | Prof. N. Bloemberger Department of Physics Harvard University | 10 | Director, Army Research Office | 1 | Bell Telaphone Laboratories, Inc. Whippany Laboratory Whippany, New Jersey Attn: Technical Reports Librarian Prof. Charles Townes | 1 | Commander Air Force Office of Scientific Research Air Research and Development Command Washington 25, D. C. Columbia Radiation Laboratories | ı | | Cambridge 38, Massachusetts Prof. Harvey Bronks Department of Physics | ı | Attn Scientific Information Branch
Department of the Army
Washington 23, D. C.
Director, Department of Commerce | 1 | Department of Physics
Columbia University
New York 47, New York | 1 | Columbia University 538 W. 120th St. New York 27. New York | | | Harvard University
Cambridge 38, Massavhusetts | 1 | Office of Technical Services Washington 25, D. C. Director, Naval Research Laborators | 1 | University of Illinois
Department of Electrical Engineering
Urbana, Illinois
Attn: H. Von Foerster | | Attn. Librarian Commander Naval Air Development Center | ı | | Chairman, Canadian Junt Staff
Fire DRB/DSIS
L450 Massachusetts Ave., N.W.
Washington 25 D. C. | ı | Director, Naval Research Laboratory
Atin. Technical Information Officer
Washington 25, D. C. | | The University of Michigan Department of Electrical Engineering | 1 | Johnsville, Pennsylvania
Attn: AEEL | 1 | | Chief, Physics Branch Division of Research U.S. Atomic Energy Commission Washington 25, D. C. | | Director. Office of Ordnance Research
Box CM. Duke Station
Durham, North Carolina
Director of Research and Development | | Electron Physics Laboratory
Ann Arbor, Michigan
Atin: Prof. J. E. Rowe | 1 | Commander U.S. Navai Electronica Laboratory San Diego, California Commanding General | 1 | | Commandant | 1 | Headquarters. USAF Attn. AFDRD Washington 45. D. C. | t
1 | U.S. Atomic Energy Commission
Technical Information Extension
P.O. Box of
Oak Ridge, Tennessee | 1 | Commanding General
Rome Air Development Center
Griffiss Air Force Base
Rome, New York
Attn: RCRW | | | Air Force Institute of Technologs
(AUI Library, MCLI-LIB, Bidg. 125,
Wright-Patterson Air Force Base
Ohio | ı | General Electric Company Electron Tube Division of the Research The Knolls | h Laboratory | Varian Associates
511 Hansen Way
Palo Aito, California
Attn: Technical Library | | Commanding General Signal Corps Engineering Laboratories Evans Signal Laboratory Area | · | | Commander
Air Force Cambridge Research Labori
Attn. CRREL
L. G. Hansrom Field
Bedford, Massachusetts | Atories | Schenectady, New York
Attn: E. D. McArthur
Dr. Harold Glaser | 1 | Attn: Technical Library Westinghouse Electric Corp. Electronic Tube Division | 1 | Building 27 Belmar, New Jersey Attn. Technical Documents Center | 1 | | Cummandar | 1 | Office of Naval Research
Washington 25 D. C.
Harvard University | 1 | P.O. Box 284 Elmira, New York Attn: Mr. Sheldon S. King, Librarian | 1 | Commanding General Signal Corps Engineering Laboratories Fort Monmouth, New Jersey Attn. SIGEL-SMB:mil, MOS-Magnetic Materials | | | Air Force Flight lest Center
Aim FTOTL
Edwards Air Force Base
California | 1 | narvard University Cruft Laboratory Cambridge 38, Massachusetts Attn: Technical Reports Collection | ı | M. D. Adcock, Head
Microwave Systems and Components
American Systems, Inc.
3412 Century Boulevard
Inglewood, California | | MOS-Magnetic Materials Commanding General | 1 | | Commander Air Force Misselle Development Center Aith - HDOI Holloman Air Force Base | | Hughes Aircraft Company
Florence at Teale St.
Culver City California
Attn Documents Group, Bldg. 6, Rm | Y (O) | Inglewood, California Antenna Laboratory | 1 | Commanding General Wright Air Development Center Wright Patterson Air Force Base Ohio Attn WCREO 4 | 1 | | Commenda | ı | Institute of Aeronautical Sciences | A2015 | Antenna Laboratory Electrical Engineering Research Labora University of Illinois Urbana, Illinois Attn: Dr. P. F. Mayes | itory | Commanding Officer
Squier Signal Laboratory
Fort Monmouth, New Jersey | | | Air Force Office of Scientific Research
Airo SRS
Washington 25, D. C. | 3 | 2 East bé St. New York It New York Prof Zohrab Kaprielian | 1 | Antenna Laboratory Ohio State University Radaarch Foundation | | Attn. V. J. Kublin Prof. N. DeClaris Cornell University Itha: a. New York | ' | | Commander
Air Faire Rusearch Division
Ath. RRRIL
Washington 2s. D. C. | z | Chrab Raprielian University of Southern California School of Engineering Department of Electrical Engineering University Park Los Angeles T. California | | Columbus, Ohio Attn: Dr. C. T Tai Assistant Secretary of Defense | 1 | Department of Electrical Engineering | 1 | | Commander Air Force Special Weapons Center Attn: 5WOI | | Prof. P. Kusch | 1 | Research and Development Board
Department of Defense
Washington 25 D. C | 1 | Ithaca, New York Attn. Dr. H. G. Broker Department of Electrical Engineering | 1 | | Kirlland Air Force Base New Mexics Commander | ı | Department of Physica
Columbia University
New York 2. New York
Massachusetts Institute of Technology | 1 | Bell Telephone Laboratories Inc
Central Serial Records
Technical Information Library
451 West St. | | New Haven, Connecticut Director, Naval Research Laboratory | 1 | | Commander Air Rissarch and Dischopment Comman Air Rissarch and Dischopment Comman Air RDR Andrews Air Ester Place Washington 25, D. C. | i d | Research Laboratories of Electronics Research Laboratories of Electronics Room 408-441 Document Office Cambridge 39. Massachusetts Attn. J. H. Hewitt | 1 | 453 West St. New York 14, New York Boeing Air-rait Company Physical Research Unit | 1 |
Washington 25, D. C. Attn. Code 2000 Director Navai Ordnance Laboratory | ı | | Commandor | | Hans More
Onford University
Oxford England | , | Seattle 14 Washington
Attn Mr. R W Tiltnan
Dr. C. ⁷ Bouwkamp | 1 | White Oak, Maryland Director, Naval Research Laborators | 1 | | Air RDRA Andrew & Arr Fire Dass Massington ws. D. C. | | National Aeronautics and Space Adminis Washington 25 D. C. | Stration | Philip's Research Laboratories N. V. Philip's Glosulampenfahrusken | | Washington 25 D C Attn code 525C Douglas Aircraft Co., Inc. | 1 | | Air Resignition (Descriptions Common
Air Hilli
Andreas & r. Forci Dage | | National Bureau of Standards Library
Riom 203, Northwest Building
Washington 25 D. C. | 1 | Eindhoven Netherlands
VIA ONR London
Brunklyn Polytechnic Institute | 1 | El Segundo, Distator El Segundo, California Elsettrical Engineering Department Illinois Institute of Ferboology | | | Machington, S.D. C. Consumder Ar Resear hand Deselopment Common | ı
d | Office if Naval Research Department of the Navy Altin Code 420 Washington AS D C | | Microwave Research Institute 55 Iohuson St Brooklyn I New York Attn. Dr. A. Oliner | 1 | Technology Center
Chicago IA - Illinois | | | AT RESERT And Distribution of Comman
Air HDRC
Androne A : F : Dane
Machington . D : Commandario | | Ohio State University Dipartment of Flectrical Engineering C lumbus Ohio | , | California Institute of Technology
Pasade ia California
Attn. C. H. Papas | 1 | Electrical Engineering Department
University of Temps
Bon F. University Station
Austin, Temps | 1 | | Community Art Board and Declinion entitionings of Art Board and Declinion entitionings of Arterior Art Fire Chair Back Option Art Declinion Community of Declinion Community of Declinion Community of the Communi | 4 | Mr. F. Okresa
Spirrs (spistage Compans
Fliction Take Dischine
Mail Station (Disc | | Cambridge University
Radiophysics Dission | | Plestronica Research Laborat r.
Stanford University | | | Washingtongs D. C. Commando Arm. Rocket and Guided Miss Agen-
Arm. ORDER 071 | | Strat Sect. New York | | Cambridge, England VIA ONR London Attn. Mr. 'A Ratchille | | Attn Applied Electronics Laboratory
Documents Library
Federal Telecommunications Laboratory | i
ee Inc | | Attn. ORDNR OTI
Redet ive Arsenal
Sistema | | Physics Program
National Science Englidation
Washington 25 D. C | ı | Chalmers Institute of Technology
Godeborg, Sweden
VIA ONR London
Attn. Prof. S. Ekelof and Prof. H. Wa. | ımer | 556 Washington Ave
Nilley, New Jersey
Attr. A. K. Wing | 1 | | ORGANIZATION N | O. COPIES | ORGANIZATION | | | |--|-----------|--|------------|---| | Georgia Institute of Tachnology | | Technical University | NO. COPIES | ORGANIZATION NO. COPIES | | Atlanta, Georgia
Attn: Mrs. J. Fenley Crosland, Librar | ian l | Department of Electrical Engineering | | Commanding Officer U.S. Army Signal Research and Development Laboratoria | | Carl A. Hedberg, Head
Electronics Division | | VIA ONR London
Attn: Prof. J. P. Schouten | 1 | Fort Monmouth, New Jareau | | Denver Research Institute
University of Denver | | University of Florida | | Attn: Technical Documents Center | | Denver, Colorado | 1 | Gainesville, Florida
Attn: Applied Electronics Laboratory | | Commanding Officer U.S. Army Signal Research and Development Laboratory | | Hughes Aircraft Company
Antenna Research Department
Bidg. 12, Room 4617 | | U.S. Naval Post Graduate School | 1 | Fort Monmouth, New Jersey Attn: SIGRA/SL-PRM (Records File Copy) | | Culver City, California | 1 | Monterey, California
Attn: Librarian | | | | Hughes Aircraft Company Research and Development Library | | Watson Laboratories Library | 1 | Commanding Officer U.S. Army Signal Research and DevelopmentLaboratory | | Research and Development Library
Culver City, California
Attn: John T. Milek | 1 | AMC, Red Bank, New Jersey
Attn: ENAGSI | 1 | Fort Monmouth, New Jersey Attn: Logistice Division (For SIGRA/SL-PRM) | | Library | • | Willow Run Research Center | | Commanding Offices | | Boulder Laboratories
National Bureau of Standards
Boulder, Colorado | | University of Michigan Ypsilenti, Michigan Attn: Dr. K. Siegel | | U.S. Army Signal Research and Development
Laboratory | | Attn: Victoria S. Barker | 2 | Advisory Group on Flagues Tubes | 1 | | | Mathematics Research Group
New York University | | 346 Broadway
New York 13, New York | 2 | Atin: Technical Information Division 5 (FOR RETRANSMITTAL TO ACCREDITED BRITISH AND CANADIAN GOVERNMENT REPRESENTATIVES AND TO DEPARTMENT | | 25 Waverly Place
New York, New York | | Bell Telephone Laboratories | • | REPRESENTATIVES AND TO DEPARTMENT
OF COMMERCE) | | Attn: Dr. M. Kline | 1 | Murray Hill, New Jersey
Attn: Dr. W. Kluver | 1 | Deputy President | | Mr. Frank J. Mullin Department of Electrical Engineering | | California Institute of Technology | | U.S. Army Security Agency Board
Arlington Hall Station
Arlington 12, Virginia | | California Institute of Technology Pasadena, California | 1 | Electron Tube and Microwave Laboratory Pasadena, California Attn: Prof. R. Gould | | Director, U.S. Naval Passanah Laborator | | Naval Air Missile Test Center
Point Mugu, California | | Chief. Bureau of Shine | 1 | Washington 25, D. C.
Attn: Code 2027 | | Office of the Chief Signal Officer | 1 | Department of the Navy
Washington 25, D. C. | | The European Office | | Pentagon Washington 25. D. C. | | Attn: 691A4 | 1 | U.S. Army R and D Liaison Group
APO 757 | | Attn: SIGET | 1 | Chief of Ordnance Washington 25, D. C. | | New York, New York
(FOR RETRANSMITTAL TO CONTRACTOR,
DA 91-591-EUC-1312) | | Office of Technical Services Department of Commerce | | Attn: ORDTX-AR | 1 | Hughes Aircraft Company | | Washington 25, D. C. | 1 | Chief of Research and Development OCS, Department of the Army Washington 25, D. C. | | Culver City, California Attn: Dr. Mendel, Microwave Tube Laboratory | | Radiation Laboratory Johns Hopkins University 1315 St. Paul St. | | Chief Sienal Officer | 1 | Marine Corps Lisison Office | | Baltimore 2, Maryland
Attn: Librarian | | Department of the Army Washington 25. D. C. | | U.S. Army Signal Research and Development
Laboratory | | The Rand Corneration | 1 | Attn: SIGRD | 1 | Fort Monmouth, New Jersey | | Santa Monica California | | Chief, U.S. Army Security Agency
Arlington Hall Station | | Massachusetts Institute of Technology
Research Laboratory of Electronics
Cambridge, Massachusetts | | Attn: Margaret Anderson, Librarian | 1 | Arlington 12, Virginia Commander | 2 | Attn: Prof. L. Smullin 1 | | Randall Morgan Laboratory of Physics
University of Pennsylvania
Philadelphia 4, Pennsylvania | | Air Force Command and Control Developm-
Division | ent | OASD (R and E), Rm. 3E1065 The Pentagon | | Regents of the University of Michigan | 1 | Air Research and Development Command
United States Air Force | | Washington 25, D. C.
Attn: Technical Library | | Ann Arbor, Michigan | 1 | Laurence G. Hanscom Field
Bedford, Massachusetts | | Radio Corporation of America Laboratories Princeton, New Jersey | | Research Laboratory of Electronics Document Room | | Attn: CROTL Commander | 1 | Attn: Dr. L. S. Nergaard | | Massachusetts Institute of Technology
Cambridge 39, Massachusetts
Attn: Mr. J. Hewitt | | Wright Air Development Division Attn: WCOSI-3 | | Raytheon Manufacturing Company
Microwave and Power Tube Operations | | Prof. Vincent C. Bidania | 1 | Wright-Patterson Air Force Base
Ohio | | Waltham 54, Massachusetts Attn: W. C. Brown | | Department of Electrical Engineering
University of Wisconsin | | Commanding Officer | 2 | Research Division Library | | Madison 6, Wisconsin | 1 | Diamond Ordnance Fuse Laboratories Washington 25. D. C | | Raytheon Company
48 Seyon St. | | Royal Technical University Laboratory for Telephony and Telegraphy Ostervoldende 10 | | Attn: Library, Rm. 211, Bldg. 92 | ı | Waltham 54, Massachusetts] S.F.D. Laboratories, Inc. | | Ostervoldgade 10
Copenhagen, Denmark
VIA ONR London | | Commanding Officer
Frankford Areenal
Philadelphia 37, Pennsylvania | | 800 Rahway Ave.
Union, New Jersey | | Attn. Prof. H. L. Knudeen | ı | Attn: ORDRA-FEL | ı | Stanford University | | Prof. Samuel Seely, Head
Department of Electrical Engineering | | Commanding Officer and Director U.S. Navy Electronics Laboratory | | Electronic Research Laboratory Palo Alto, California | | University Circle | | San Diego 32, California | 1 | Atin: Prof. D. A. Watkins : Sylvania Electric Products | | Cleveland 6, Ohio | 1 | Commanding Officer, 9560th TSU U.S. Army Signal Electronics Research Unit P.O. Box 205 | | Sylvania Electric Products Physics Laboratory Bayside, Long Island, New York | | Signal Corps Engineering Laboratories Fort Monmouth, New Jersey Attn. Mr. O. C. Woodyard | | P.O. Box 205
Mountain View. California | 1 | Alin: L. R. Bloom | | Stanford Research Institute | 1 | Commanding Officer U.S. Army Signal Material Support Agency | | U.S. Navy Electronics Liameon Office U.S. Army Signal Research and Development | | 9°4 Commercial
Stanford, California | | THE STOMS-ADJ | ı | Laboratories Fort Monmouth, New Jersey 1 | | Attn: Dr John T. Bolljohn Division of Electrical Engineering | 1 | Commanding Officer U.S. Army Signal Research and Development | | Watkins-Johnson Company | | Technical Reports Collection | • | Fort Monmouth, New Jersey | | 333 Hillview Ave,
Stanford Industrial Park
Palo Alto, California j | | Harvard University | | Attn Director of
Research | 1 | Westinghouse Electric Corporation | | Cambridge 38, Massachusetts | 1 | Commanding Officer Office of Naval Research, Branch Office 1000 Geary St. | | Research Laboratory Beulah Road, Churchill Boro | | | | San Francisco 9, California | 1 | Pitteburgh 35, Pennsylvania 1 | | | | | | |